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Dual solutions of the Greenspan-Carrier equations 

By D. H.  WILSON 
Department of Mathematics, The Durham Colleges, Durham 

(Received 17 May 1963) 

This paper concerns the boundary layer on a semi-infinite flat plate in a uniform 
stream of conducting fluid, with magnetic field in the stream direction. It is 
found that when p, the square of the ratio of the Alfvhn speed to the undisturbed 
h i d  speed, is slightly less than unity, two solutions of the Greenspan-Carrier 
equations governing the motion exist for E (  = o - p )  less than unity. 

1. Introduction 
The steady two-dimensional flow of a viscous, incompressible, electrically- 

conducting fluid near a semi-infinite, rigid flat plate has heenshown by Green- 
span & Carrier (1959) to be governed by the boundary-layer equations 

f”’+ff’‘-Pgg‘‘ = 0, (1 .1)  

grr + qfq’  -f’g) = 0, 
with boundary conditions 

(1.2) 

f ( 0 )  = f ’ ( O )  = g(0) = 0, f ’ (CO)  = g’(c0) = 4. ( 1 .3 )  

Here primes denote differentiation with respect to the Blasius non-dimensional 
variable y = $(U,/vx)iy, y being measured normal to the plate and x along the 
plate perpendicular to the leading edge. The undisturbed fluid velocity U, is 
parallel to the plate and in the x-direction and the applied magnetic field H, is 
uniform and in the same direction. The square of the ratio of the Alfvhn speed 
to the fluid speed in the undisturbed flow is p = pHi/pU& and t. = gpv, where 
g is the electrical conductivity, ,u the magnetic permeability, v the kinematic 
viscosity and p the density of the fluid. 

The velocity field q and the magnetic field H are given by 

q = curl$(x,y) k, H = curlA(x,y) k, (1.4) 

@ = (U,vx)~f(y), A = H”(lLE/U()~ g(y). (1.5) 

where k is a unit vector in the z-direction and 

Thus f is associated with the velocity field and g with the magnetic field. 
In  their paper Greenspan & Carrier gave various forms of approximate solu- 

tions and also found some numerical solutions when E = 10, 1, 0.05 and 0-005. 
Glauert (1961) has also found series solutions which are reliable for c > 10 and 
E < 0.001 ; however, he assumed 1 - /3 was not small and stated that these cannot 
be relied on near p = 1.  Reuter & Stewartson (1961) have shown that for p > 1 
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there are no solutions of this boundary-value problem such that , f”(O) 3 0. 
For the present situation, therefore, /3 lies between 0 and 1. 

Greenspan & Carrier discussed the behaviour of the solutions near /3 = 1 
for E = co and E = 1. An attempt by Stewartson to extend their work to cover all 
values of E was successful for E > 1 but led to an apparent contradiction when 
0 < E < 1.t The present work was undertaken to throw some light on the nature 
of the solutions of the equations near ,!3 = 1 and to resolve the contradiction he 
found. The present paper is primarily concerned with the behaviour of solutions 
for 0.75 < /3 < 1 and certain values of E between 0.01 and 10. 

2. Method of solution 
The equations were taken in the form 

PIft + J’F” - GG” = 0, 

G“+&(FG‘-F‘G) = 0, 

(2.1) 
(2.2) 

and single-point boundary conditions used 

the values of p and q being varied as required. Equations (2.1) and (2.2) were 
then written in the form of six first-order differential equations and integrated 
numerically on a computer using a Runge-Kutta method developed by Merson. 
This automatically adjusted the step length to allow for a predetermined trun- 
cation error. When F’ and G’ had reached their asymptotic values, say 

the functions F and G were transformed by the relations 

F(0)  = P’(0) = G(0) = 0, G’(0) = 4, F”(0)  = p ,  (2.3) 

F’(co) = 2A, G’(w) = 2B, 

F(7)  = A3f(A%), (2.4) 
G(7) = A-BBg(A4-7). (2.5) 

These transform (2.1) and (2.2) into (1.1) and (1.2), satisfying (1.3), i f p  = B2/A2. 
Initial values of  g’ and f ”  were then found: g ’ ( 0 )  = q/B, f” (0 )  = p/A*. Thus 
a range of values of /3 was found with corresponding g ‘ ( 0 )  andf”(0). 

3. Duality of solution 
Solutions were found with the parameter E as 10,0.5,0.1 and 0.01. For E = 10 the 

plot off”(0) against /3 tended to the point (0, 1) as might be inferred from figure 2 
of Greenspan & Carrier’s paper and from Stewartson’s work. However, for the 
other three values of E ,  all less than unity, the plot off”(0) (and g ‘ ( 0 ) )  turned 
sharply round, never actually reaching p = 1, see figure 1. The values of /3 in 
each case attained an upper bound slightly less than unity; values are given in 
table 1. Thus for a range of values of /3 there were found to be two pairs of values 
of f ” (0 )  and g’(0)  satisfying (l.l), (1.2) and (1.3) for E < 1. 

To examine the accuracy of the solutions various checks were carried out. 
It was mentioned in the previous section that the computational program 

t The difference between the properties off, g when E < 1 and when e > 1 is discussed 
in a forthcoming paper (Stewartson & Wilson 1964) which also includes an analytic 
explanation of the phenomenon described here. 
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used automatically adjusted the step length to allow for a predetermined 
truncation error in any of the variables calculated. This parameter was taken 
as lo-’; in certain arbitrary cases where it was varied to 10-8 the proportional 
values of the functions computed were found to differ at  the most by lou5. 

P 
FIGURE 1. ‘Skin friction’, f”(O), ws for values of G shown. 

P a t  onset of 
inflections in 

E Max. P velocity profile 
0.01 0.984 0-94 
0.1 0.953 0.84 
0.5 0.988 0.88 

10 - 0.92 

TABLE 1 

The computation was continued until F“(q) < when /3 was calculated; 
in cases of interest the computation was carried out again using equations (1.1) 
and (1.2) instead and the values just found for p ,  f”(0) and g’(0). In  each case 
~’(co) and g’(c0) came very close to 3;  e.g. for E = 0.1 the error on the upper part 
of the curve was between 0.005 and 0.1 yo at maximum p and on the lower curve 
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between 0.1 and 0.5 %. The lower accuracy here was attributable to the greater 
length of the calculation in both cases (due to the correspondingly wider bound- 
ary layer, see later) and the considerably smaller initial values of f”(0) and 
g’(0). Identical solutions were also obtained from different pairs of starting 
values F”( 0 )  and G’( 0). 
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FIGURE 2. (u)f”(~) us r]  for three values of /3 when E = 0-1. To the right of points marked. 
the curve follows closely the asymptotic behaviour. ( b )  g ” ( 7 )  vs for 3 values of /3 
when e = 0.1. 

Valid for 7 
P C b U greater than 

0.7792 0.0209 0.120 3.5 10 
0.9524 0.0045 0.084 20.5 32 
0.8085 0.0185 0.163 28.0 37 

TABLE 2 

From (1.2) and (1.3) it can be seen (Glauert 1961) that, for any value of 6 ,  

when 7 is largef N g N 2(7-a) ,  where a is some constant. From (1.1) and (1.2) 
it  can be shown that 

f” N 6 exp { - c(7 - a)2], 9‘’ N d exp ( - c(7 - a)2], (3.1) 

c 2 - ( l + € ) c + ( l - p ) €  = 0. (3.2) 

where b and d are constants and c is the algebraically smaller root of the equation 
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Values of c were calculated for three of the points on the curve in figure 1 for 
6 = 0.1; one on the upper and one on the lower branch near p = 0.8 and for the 
maximum value of ,8 found. The computed behaviour off” for these three solu- 
tions is shown in figure 2 .  Values of a and b found for these appear in table 2. 
The deviation of the computed values from the asymptotic values was found 
to be less than for 7 greater than the values given and to decrease with in- 
creasing 7 .  

4. Discussion of results 
Parallel to the plate the component of velocity is ZL = &U,f’(q), and the 

component of the magnetic field H, = $Hog’(7). The velocity profiles for the 
three cases mentioned above, when 6 = 0.1, are shown in figure 3. Two of 
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FIGURE 3. (a )  Velocity profiles for three values of /I when e = 0.1. (b )  Profiles of the 
magnetic field component H ,  for three values of /J’ when E = 0-1. 

these are seen to contain inflexions; were it not for the magnetic field this would 
imply instability in the boundary layer from Rayleigh’s principle (see Schlichting 
1955). Inflexions in the velocity profile occur where f“ = 0, and are the points 
where the tangents to the curves in figure 2 are parallel to the axis. 

For each value of e considered, inflexions in the velocity profile set in on the 
upper curve towards p = 1. Details are given in table 1. 

The solutions on the lower curve, except near the turn, are considerably smaller 
than those on the upper curve for the same values of /3. The drag on the plate is 
given by 

and the current in the boundary layer by 

The smaller solutions therefore correspond to a considerably smaller drag and 
a larger current in the boundary layer. 

7, = Qp( ug v/x)””( O), 

Hi - H, = $H,{g’(O) - 2) .  

(4.1) 

(4.2) 
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For E = 0.1 the width of the boundary layer increases from 7 = 10 for p = 0.425 
to 7 = 20 where inflexions first occur at  /3 = 0-84 to 7 = 50 a t  maximum 
/3 = 0.95. It decreases slightly as p decreases on the lower branch of the curve in 
figure 1. The lower solutions have a boundary layer in general between two and 
five times thicker than the corresponding higher solutions. In each case the 
magnetic boundary layer is the same width as the fluid one. 

For decreasing E the graph off”( 0) against /3 appears increasingly to  approach 
the bounding linesf”(0) = 1.328, /3 = l , f ” ( 0 )  = 0. 

The author would like to thank Professor K. Stewartson for much valuable 
discussion. 
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